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ABSTRACT
This tutorial presents a detailed exploration of Reinforcement Learn-
ing (RL) with a specific focus on its application in physics-based
character animation. Centered around Policy Gradient methods,
the paper methodically introduces foundational concepts such as
Markov Decision Processes and progresses to more advanced top-
ics including Actor-Critic Algorithms and Generalized Advantage
Estimation. A key feature of this tutorial is its practical approach,
incorporating step-by-step applications and examples drawn from
the CS285 course at UC Berkeley. This paper is designed to serve
both beginners and experienced individuals in the field, offering a
balanced mix of theoretical knowledge and hands-on techniques
for applying RL in character animation, and providing insights into
the potential benefits and applications of these techniques within
the domain. Our code is available at https://github.com/Akihisa-
Watanabe/rl-character-animation-tutorial.
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1 INTRODUCTION
Developing controllers for physics-based character animation is a
significant challenge, merging the need for aesthetic appeal with
physical accuracy and reactivity. The integration of reinforcement
learning (RL) has transformed this field, enabling the creation of
characters that not only move realistically but also exhibit a broad
range of athletic abilities, from basic walking to intricate acrobatics.
This tutorial delves into these advancements, with a focus on how
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RL aids in animating characters that interact dynamically with their
environments.

We start with an introduction to RL, designed for those new
to the concept, then move to its specific application in the realm
of character animation. Special attention is given to the insights
from Sergey Levine’s CS 285 lecture series at UC Berkeley, which
provides a fundamental understanding of RL principles and their
direct application in computer animation.

The tutorial concludes with a practical guide, featuring step-by-
step instructions and examples from current research. It is tailored
for readers involved in computer animation, ranging from novices
to seasoned professionals. The goal is to impart a thorough under-
standing of how RL can be utilized to generate advanced, dynamic,
and lifelike animations, equipping you with the necessary theoreti-
cal knowledge and practical skills.

2 PRELIMINARIES OF REINFORCEMENT
LEARNING

Our task is structured as a standard reinforcement learning prob-
lem where an agent interacts with its environment according to a
policy to maximize a reward signal. In this section, we define basic
reinforcement learning concepts, following the standard definition
[1, 7]. Reinforcement learning addresses the problem of learning
to control a dynamical system in a general sense. The dynamical
system is fully defined by a fully-observed or partially-observed
Markov decision process (MDP).

Definition 2.1. In reinforcement learning, a Markov Decision
Process is defined as a tupleM = (S,A,𝑇 , 𝑟, 𝛾, 𝑝 (𝑠0)), where S is
the set of states 𝑠 ∈ S, A is the set of actions 𝑎 ∈ A, 𝑇 defines
the transition probabilities 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), 𝑟 is the reward function
mapping state-action pairs to scalar rewards,𝛾 is the discount factor,
and 𝑝 (𝑠0) represents the initial state distribution. The inclusion of
𝑝 (𝑠0) acknowledges the importance of the starting conditions in
determining the trajectory of the agent’s actions and states under
a specific policy.

Time: In physics-based character animation, such as in Isaac
Gym[2], it’s important to differentiate between simulation time
steps (Δ𝑡sim) and control time steps (Δ𝑡ctrl). Simulation time steps,
often much finer, e.g., 1/120th of a second, update the physical state
of the environment. Control time steps, possibly less frequent like
every 1/60th of a second, update the control actions. This distinc-
tion allows for accurate simulation while managing computational
efficiency in control algorithms. In this paper, the time step 𝑡 refers
to the control time step Δ𝑡ctrl, a standard approach in physics-based
character animation.

State: The state𝒔𝑡 at time step𝑡 consists of a set of features that
describe the configuration of the character’s body in the context of
character animation. An example of how the state is conceptualized
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in this context is provided, as demonstrated in the paper [8]:

𝒔𝑡 = (𝒑𝑡 , ¤𝒑𝑡 , 𝒒𝑡 , ¤𝒒𝑡 , 𝒑̂𝑡+1, 𝒒̂𝑡+1) (1)

where
𝒑𝑡 : joint positions in the character’s root coordinates at time

step 𝑡 .
¤𝒑𝑡 : joint linear velocities in the character’s root coordinates at

time step 𝑡 .
𝒒𝑡 : joint rotations in the joints’ local coordinates at time step

𝑡 .
¤𝒒𝑡 : joint angular velocities in the joints’ local coordinates at

time step 𝑡 .
𝒑̂𝑡+1: anticipated target joint positions for the next time step 𝑡 + 1.
𝒒̂𝑡+1: anticipated target joint rotations for the next time step 𝑡 + 1.
Action: In many prior works[3, 4, 8], each action 𝒂𝑡 specifies

the target state (such as rotations) for PD controllers positioned at
each of the character’s joints. For example, we can define action as
follows:

𝒂𝑡 = 𝒖𝑡 (2)

where 𝒖𝑡 is the target joint angles for the PD controller. At each
time step 𝑡 , the joint torques 𝜏𝑡 are computed as:

𝜏𝑡 = 𝑲𝑝 · (𝒂𝑡 − 𝒒𝑛𝑟𝑡 ) − 𝑲𝑑 · ¤𝒒𝑛𝑟𝑡 (3)

where 𝑲𝑝 and 𝑲𝑑 denote the parameters of the PD controllers that
determine the stiffness and damping of each joint, 𝒒𝑛𝑟𝑡 and ¤𝒒𝑛𝑟𝑡 are
the joint rotations and angular velocities of the non-root joints.

Reward: The reward function plays a role in guiding the agent’s
actions. The reward, denoted as 𝑟𝑡 = 𝑟 (𝒔𝑡 , 𝒂𝑡 , 𝒔𝑡+1), is computed
when the agent performs an action 𝒂𝑡 that transitions it from state 𝒔𝑡
to state 𝒔𝑡+1. The design of the reward function can be leveraged to
make the agent imitate certain motion data or to specify a particular
task that the agent needs to accomplish.

In the study [8], a part of the reward function used for imitating
motion data is given by

𝑟 𝑣𝑡 = exp
−𝛼𝑣

∑︁
𝑗

(
| | ¤𝒒 𝑗𝑡 − ¤̂𝒒

𝑗
𝑡 | |

2
) . (4)

Here, 𝛼𝑣 is a scaling factor that adjusts the sensitivity of the reward
function to velocity discrepancies. The index 𝑗 represents the joint
number, indicating that the computation is performed for each
joint individually. The reward 𝑟 𝑣𝑡 quantifies the difference between
the simulated motion’s local joint velocities ¤𝒒 𝑗𝑡 and the reference
motion’s velocities ¤̂𝒒 𝑗𝑡 , encouraging the agent to closely mimic the
reference motion at each joint.

The final goal in a reinforcement learning problem is to learn
a policy, which defines a distribution over actions conditioned on
states, 𝜋 (𝒂𝑡 |𝒔𝑡 ). From these definitions, we can derive the trajectory
distribution. The trajectory is a sequence of states and actions of
length𝑇 , given by 𝜏 = (𝒔0, 𝒂0, · · · , 𝒔𝑇 , 𝒂𝑇 ), where𝑇 may be infinite.
The trajectory distribution 𝑝𝜋 for a given MDP𝑀 and policy 𝜋 is
given by

𝑝𝜋 (𝜏) = 𝑝 (𝒔0)
𝑇∏
𝑡=0

𝜋 (𝒂𝑡 |𝒔𝑡 )𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ). (5)

This represents the probability of obtaining the trajectory 𝜏 as a
result of the agent selecting actions 𝒂𝒕 ∼ 𝜋 (𝒂𝑡 |𝒔𝑡 ) according to
the policy 𝜋 . Notably, in an MDP framework, the current state 𝒔𝑡
and action 𝒂𝑡 are determined based on the information from only
the immediate previous time step. This principle, known as the
Markov property, implies that the future states and actions are
independent of the past, given the current state and action. As a
result, the trajectory distribution is expressed as a product of the
policy 𝜋 (𝒂𝑡 |𝒔𝑡 ) and the state transition probability 𝑝 (𝒔𝑡+1 |𝒔𝑡 , 𝒂𝑡 ),
simplifying the computation and analysis of the problem.

The objective function in reinforcement learning, denoted as
𝐽 (𝜋), is typically defined as the expected cumulative reward , also
known as the ’return’, under a given policy 𝜋 . This return is calcu-
lated as an expectation under the trajectory distribution 𝑝𝜋 (𝜏):

𝐽 (𝜋) = E𝜏∼𝑝𝜋 (𝜏 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 (𝒔𝑡 , 𝒂𝑡 )
]
. (6)

Here, 𝛾𝑡𝑟 (𝒔𝑡 , 𝒂𝑡 ) represents the discounted reward at each time step
𝑡 , where 𝛾 is the discount factor that determines the present value
of future rewards. The final goal of the agent is to find an optimal
policy 𝜋∗ that maximizes this objective function 𝐽 (𝜋):

𝜋∗ = argmax
𝜋

𝐽 (𝜋) . (7)

In other words, the optimal policy is the one that, on average, results
in the highest cumulative reward throughout the trajectory.

3 POLICY GRADIENT METHODS
Policy Gradient Methods are a class of reinforcement learning al-
gorithms that optimize the policy by learning its parameters[5],
denoted as 𝜃 . This approach is similar to how parameters are up-
dated in traditional supervised learning algorithms. However, in
this context, the parameters 𝜃 are associated with the policy de-
noted as 𝜋𝜃 . The parameters are updated iteratively in the direction
that maximizes the performance measure 𝐽 (𝜃 ). The simplest form
of this update is given by the gradient ascent rule:

𝜃 ← 𝜃 + 𝛼∇𝜃 𝐽 (𝜃 ) . (8)

Where, 𝛼 is the learning rate, and ∇𝜃 𝐽 (𝜃 ) is the gradient of the
performance measure with respect to the policy parameters.

Theorem 3.1. (Policy Gradient Theorem). Given a policy parame-
terized by 𝜃 , denoted as 𝜋𝜃 , the gradient of the objective function
𝐽 (𝜃 ) with respect to the policy parameters 𝜃 can be expressed as
follows:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝑝𝜋𝜃 (𝜏 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 )
(
𝑇−1∑︁
𝑡=0

𝛾𝑡𝑟 (𝒔𝑡 , 𝒂𝑡 )
)]

.

(9)
In this equation, 𝜏 represents a trajectory sampled from the policy
𝜋𝜃 , 𝛾𝑡 is the discount factor at time step 𝑡 , ∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 ) is the
gradient of the log-probability of the action 𝒂𝑡 given state 𝒔𝑡 under
policy 𝜋𝜃 , and 𝑟 (𝒔𝑡 , 𝒂𝑡 ) is the reward received at time step 𝑡 for
taking action 𝒂𝑡 in state 𝒔𝑡 .

The term 𝛾𝑡∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 ) in Equation (9) is similar to the
maximum likelihood. Intuitively, this means that we are assigning
more weight to more rewarding trajectories by making trajectories
with higher rewards more probable.In other words, the algorithm
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is designed to learn from the data in a way that it is most likely to
choose trajectories that yield higher rewards.

One challenge when directly applying the Policy Gradient The-
orem for updating 𝜃 is the high variance of the policy gradient
estimates. This is because the gradient is estimated based on sam-
pled trajectories, and the rewards along these trajectories can vary
significantly. This variability in rewards leads to a high variance in
the gradient estimates, which can in turn lead to unstable learning
and make it harder for the algorithm to converge to an optimal
policy. Various techniques, such as using a baseline or employ-
ing advanced variance reduction methods, have been proposed to
address this issue.

3.1 Causality and Baselines
Causality: One simple way to tackle high variance is to use the fact
of causality: policy at time 𝑡 ′ cannot affect reward at 𝑡 if 𝑡 < 𝑡 ′. This
simple, commonsensical idea allows us to discard some operands
in the summation

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝑝𝜋𝜃 (𝜏 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 )
(
𝑇−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ )

)]
.

(10)
and we define the second item in the summation as the“reward-to-
go”. Notice that in the reward-to-go term, we start the summation
from time t instead of 1, by causality. The idea is that we are multi-
plying the likelihood by smaller numbers due to the reduction of
the summation term, so we can reduce the variance to some extent.

Baselines: Another way to reduce variance is to subtract a
baseline from the reward function. The baseline𝑏 (𝒔𝑡 ) helps stabilize
learning by reducing variance. The objective function we aim to
optimize in policy gradient methods can be represented by the
equation:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝑝𝜋𝜃 (𝜏 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 )

×
(
𝑇−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ ) − 𝑏 (𝒔𝑡 )

) ]
. (11)

Subtracting a baseline 𝑏 (𝒔𝑡 ) in policy gradient methods reduces
the variance of gradient estimates. This is because the subtraction
leads to smaller squared terms in the variance calculation, thereby
reducing the overall variance and stabilizing learning.

The baseline 𝑏 (𝒔𝑡 ) in policy gradient methods is a function de-
signed to estimate the expected rewards for a given state 𝒔𝑡 . Its
training involves comparing the baseline’s predictions of these ex-
pected rewards with the actual returns (target values) from those
states. This process utilizes the mean squared error (MSE) loss,
which is calculated as the average squared difference between the
predicted values 𝑏 (𝒔𝑖 ) by the baseline and the actual target values
𝑦𝑖 :

𝑙 (𝑏) = E𝒔𝑖 ,𝑦𝑖∼𝐷
[
| |𝑦𝑖 − 𝑏 (𝒔𝑖 ) | |2

]
, (12)

where 𝐷 is the dataset accumulated by the agent. The objective is
to accurately adjust the baseline function to predict the expected
rewards for states, thereby helping to reduce the variance of the
policy gradient estimates.

3.2 Advantage Function
Now, we introduce the Advantage function, a key concept that
further refines policy gradient methods. The Advantage function
𝐴𝜋 (𝒔𝑡 , 𝒂𝑡 ) quantifies the relative value of taking a specific action
𝒂𝑡 in a given state 𝒔𝑡 , compared to the average value of all possible
actions in that state according to policy 𝜋 . The Advantage function
is defined as the difference between the Q-function, 𝑄𝜋 (𝒔𝑡 , 𝒂𝑡 ),
which represents the expected future return of taking action 𝒂𝑡 in
state 𝒔𝑡 and then following policy 𝜋 , and the value function,𝑉 𝜋 (𝒔𝑡 ),
which represents the expected future return of being in state 𝒔𝑡 and
then following policy 𝜋 :

Definition 3.2. The Q-function represents the expected future
return of taking action 𝒂𝑡 in state 𝒔𝑡 and then following policy 𝜋

for all future timesteps:

𝑄𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 ) = E𝜏∼𝑝𝜋𝜃 (𝜏 |𝒔𝑡 )

[
𝑇−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ )

]
. (13)

Definition 3.3. The value function represents the expected future
return of being in state 𝒔𝑡 and then following policy 𝜋 for all future
timesteps:

𝑉 𝜋,𝛾 (𝒔𝑡 ) = E𝒂𝑡∼𝑝𝜋𝜃 (𝜏 |𝒂𝑡 ,𝒔𝑡 )

[
𝑇−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ )

]
. (14)

Definition 3.4. Given a policy 𝜋 and a discount factor 𝛾 , the
Advantage function 𝐴𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 ) quantifies the relative value of
taking a specific action 𝒂𝑡 in a given state 𝒔𝑡 over the average value
of all possible actions in that state under the policy 𝜋 . It is defined
as:

𝐴𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 ) = 𝑄𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 ) −𝑉 𝜋,𝛾 (𝒔𝑡 ) . (15)

The advantage function thus quantifies the relative benefit of
taking action 𝒂𝑡 in state 𝒔𝑡 by comparing the Q-function to the
value function. A positive advantage function indicates that taking
action 𝒂𝑡 in state 𝒔𝑡 is expected to yield a higher return than the
average return of all possible actions in state 𝒔𝑡 . Conversely, a
negative advantage function indicates that taking action 𝒂𝑡 in state
𝒔𝑡 is expected to yield a lower return than the average return of all
possible actions in state 𝒔𝑡 .

With the advantage function, we can express a policy gradient
estimate using a Monte Carlo estimate:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝑝𝜋𝜃 (𝜏 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 )𝐴𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 )
]
. (16)

This equation can be intuitively understood as follows: a step in the
direction of the policy gradient should increase the likelihood of ac-
tions that perform better than average, and decrease the likelihood
of actions that perform worse than average.

3.3 Actor Critic Algorithm
Building upon the previously introduced concepts of the Advan-
tage function, Q-function, and Value function, we now derive the
Actor Critic Algorithm. In the context where 𝒔𝑡 , 𝒂𝑡 are not random
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variables, the Q function can be expressed as follows:

𝑄𝜋 (𝒔𝑡 , 𝒂𝑡 ) = 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + E𝜏∼𝑝𝜋𝜃 (𝜏 )

[
𝑇−1∑︁
𝑡 ′=𝑡+1

𝛾𝑡
′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ )

]
= 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾E𝒔𝑡+1∼𝑝𝜋𝜃 (𝒔𝑡+1 |𝒔𝑡 ,𝒂𝑡 )

[
𝑉 𝜋 (𝒔𝑡+1)

]
. (17)

For practical purposes, we introduce a simplifying assumption.
Although it may not always hold true in reality, we consider the
actual 𝒔𝑡+1 observed in the current trajectory as a representative
of the average of 𝒔𝑡+1 that we would obtain. This allows us to
approximate the Q function as:

𝑄𝜋 (𝒔𝑡 , 𝒂𝑡 ) ≈ 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾𝑉 𝜋,𝛾 (𝒔𝑡+1). (18)

This approximation is appealing because it simplifies the learning of
the advantage function. The advantage function now only depends
on 𝑉 , which in turn only depends on 𝑠 , unlike 𝑄 which depends
on both 𝑎 and 𝑠 . This reduces the complexity of learning since 𝑄
requires a larger sample size due to its increased dimensionality.
Using this approximation, we can substitute into the advantage
function:

𝐴𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 ) = 𝑄𝜋,𝛾 (𝒔𝑡 , 𝒂𝑡 ) −𝑉 𝜋,𝛾 (𝒔𝑡 )
≈ 𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾𝑉 𝜋,𝛾 (𝒔𝑡+1) −𝑉 𝜋,𝛾 (𝒔𝑡 ). (19)

This leads us to the actor-critic formulation:

∇𝜃 𝐽 (𝜃 ) = E𝜏∼𝑝𝜋𝜃 (𝜏 )

[
𝑇−1∑︁
𝑡=0

𝛾𝑡∇𝜃 log𝜋𝜃 (𝒂𝑡 |𝒔𝑡 )

×
(
𝑟 (𝒔𝑡 , 𝒂𝑡 ) + 𝛾𝑉 𝜋,𝛾 (𝒔𝑡+1) −𝑉 𝜋,𝛾 (𝒔𝑡 )

) ]
. (20)

In policy gradient with baselines, there is no bias in our estima-
tion, but there might be high variance due to our single-sample
estimation of the Q-function. On the other hand, in the actor-critic
algorithm, we have lower variance due to the critic, but we end up
having a biased estimation because of the possible modeling error
in 𝑉 𝜋,𝛾

𝜙
(·).

3.4 Generalized Advantage Estimation
The actor-critic advantage function (equation 19) and the Monte
Carlo policy gradient (baseline) present a trade-off between bias and
variance. The actor-critic advantage function has lower variance
but higher bias, while the Monte Carlo policy gradient has lower
bias but higher variance. This trade-off becomes more pronounced
as we project our trajectory further into the future, where the
variance increases due to the insufficiency of the current single
sample approximation for future representation. To manage this
trade-off, it is advantageous to use the actor-critic based advantage
for long-term predictions, which incorporates a larger number of
states for better approximation in the long run, and the Monte Carlo
based one for short-term predictions, which excels in achieving
accurate values in the near term.

To avoid the trajectory extending to a point where the variance
becomes excessively large, we can truncate it. This concept is illus-
trated in Figure 1, where the trajectory is cut off before the variance
escalates excessively. We can estimate the advantage function by

integrating the two approaches, applying theMonte Carlo approach
only for the initial n steps. This is mathematically expressed as:

𝐴
𝜋,𝛾
𝑛 (𝒔𝑡 , 𝒂𝑡 ) =

𝑡+𝑛−1∑︁
𝑡 ′=𝑡

𝛾𝑡
′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ ) −𝑉 𝜋,𝛾

𝜙
(𝒔𝑡 ) + 𝛾𝑛𝑉 𝜋,𝛾

𝜙
(𝒔𝑡+𝑛) .

(21)
In this equation, we apply an n-step value function estimator,
which sums the reward from the current time to 𝑛 steps in the
future. Often, setting 𝑛 > 1 yields superior performance. The term∑𝑡+𝑛−1
𝑡 ′=𝑡 𝛾𝑡

′−𝑡𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ ) −𝑉 𝜋
𝜙
(𝒔𝑡 ) is the Monte Carlo method policy

gradient applied over 𝑛 steps. The last term, 𝛾𝑛𝑉 𝜋
𝜙
(𝒔𝑡+𝑛), is the dis-

counted value function at the end of the n-step trajectory. This term
is used to estimate the future returns beyond the n-step trajectory,
and it is where the actor-critic approach comes into play.

𝑡′ = 0

𝑡! = 𝑡 + 𝑛

lower variance

higher variance

𝑡! = 𝑡

Figure 1: Depiction of trajectory and variance over time. Mul-
tiple trajectories are showing that the dispersion is large for
distant time steps and small for near time steps. This high-
lights the need to truncate the trajectory at a certain point (
𝑡 ′ = 𝑡 +𝑛 ) to prevent the variance from escalating excessively.

However, the choice of 𝑛 is a hyperparameter that needs to be
tuned. A small 𝑛 can lead to high bias and low variance, while a
large 𝑛 can lead to low bias and high variance. To address this issue,
we can use a weighted average of all possible 𝑛-step estimators,
which is known as Generalized Advantage Estimation (GAE) [6].
The GAE is defined as:

𝐴
𝜋,𝛾,𝜆

GAE (𝒔𝑡 , 𝒂𝑡 ) = (1 − 𝜆)
∞∑︁
𝑛=1

𝜆𝑛−1𝐴𝜋,𝛾
𝑛 (𝒔𝑡 , 𝒂𝑡 ), (22)

where 𝜆 ∈ [0, 1] is a hyperparameter that determines the trade-off
between bias and variance.When 𝜆 = 0, the GAE reduces to the one-
step actor-critic estimator, which has high bias and low variance.
When 𝜆 = 1, the GAE reduces to the Monte Carlo estimator, which
has low bias and high variance. By choosing an appropriate value
of 𝜆, we can balance the trade-off between bias and variance.

The equation 22 can be expanded as:

𝐴
𝜋,𝛾,𝜆

𝐺𝐴𝐸
(𝒔𝑡 , 𝒂𝑡 ) = (1 − 𝜆) (𝐴𝜋,𝛾

1 + 𝜆𝐴𝜋,𝛾

2 + 𝜆2𝐴𝜋,𝛾

3 + · · · )

=

∞∑︁
𝑡 ′=𝑡

(𝛾𝜆)𝑡
′−𝑡𝛿𝑡 ′ . (23)
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Here, 𝛿𝑡 ′ is defined as 𝛿𝑡 ′ = 𝑟 (𝒔𝑡 ′ , 𝒂𝑡 ′ ) + 𝛾𝑉 𝜋,𝛾 (𝒔𝑡 ′+1) − 𝑉 𝜋,𝛾 (𝒔𝑡 ′ ),
which is the temporal difference (TD) residual of𝑉 with discount 𝛾 ,
following the description by [7]. Notably, 𝛿𝑡 ′ serves as an estimate
of the advantage of the action 𝒂𝑡 ′ , representing the benefit of taking
action 𝒂𝑡 ′ in state 𝒔𝑡 ′ compared to the average value of that state.

For the finite horizon case, the following representation is apt:

𝐴
𝜋,𝛾,𝜆

𝐺𝐴𝐸
(𝒔𝑡 , 𝒂𝑡 ) =

𝑇−1∑︁
𝑡 ′=𝑡

(𝛾𝜆)𝑡
′−𝑡𝛿𝑡 ′ . (24)

This formulation allows for an efficient implementation of the gen-
eralized advantage estimator, employing a recursive calculation:

𝐴
𝜋,𝛾,𝜆

GAE (𝒔𝑡 , 𝒂𝑡 ) = 𝛿𝑡 + 𝛾𝜆𝐴𝜋,𝛾,𝜆

𝐺𝐴𝐸
(𝒔𝑡+1, 𝒂𝑡+1) . (25)

This approach systematically balances between bias and variance,
thus optimizing the learning process.
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